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Abstract: Metasurface polarizers are essential optical components in modern integrated optics and play a vital role 

in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, 

inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions 

based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, 

minimizing both time and simulation resources requirements, while better results can be achieved compared to 

traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural 

networks to design a metasurface grating structure with high extinction ration of 60000 at visible spectral wavelength 

of 632 nm, could be achieved.  
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1. Introduction 

Quantum cryptography is an innovative subfield of cryptography that leverages the principles of quantum 

mechanics in communication to provide distribute encryption keys. Different from classical cryptography, 

quantum cryptography is based on fundamental physics laws and is therefore highly immune to attacks by 
the most advanced computing systems. Quantum key distribution (QKD) is a secure communication 

protocol which utilizes quantum mechanics principles to distribute encryption keys [1]. Polarization 

encoding is the most used degrees of freedom to encode data in QKD system [2]. Polarizers are considered 

as essential optical components used in both transmitters and receivers of the QKD systems [3]. 
Metasurfaces, which are optical devices comprising structures on the nanometer scale and designed to 

control the wavefront and properties of light, are promising artificial materials to replace conventional 

optical components such as refractive optical elements (ROEs). Metasurfaces have the ability to manipulate 
various optical properties, including polarization, amplitude, and phase, within a single component. 

Besides, they provide the capability to reduce the form factor of bulky systems by replacing conventional 

optical elements [4]. 
The design of microscopic structures remains a major topic in metasurface optics research. Even though 

optical structure performance is typically straightforward to predict, through sophisticated simulation 
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algorithms such as finite element method (FEM) and finite different time domain (FDTD), the problem of 
inverse designing an on-demand optical metasurface device is not that simple. At the early research, the 

prototypical designs were mostly based on educable guesses such as the split ring, V-shaped antenna, and 

gammadions. However, limited by the prior knowledge of humans and the sophisticated light-matter 

interaction mechanisms, exceptional functionalities and extremely high efficiencies may have never been 
discovered by intuitively guessed geometries. In order to overcome the difficulty of metasurface and optical 

design, inverse design methodologies, such as adjoint methods and evolutionary algorithms, have become 

one of the main themes of research in recent years. These algorithms have successfully been implemented 
for the design of different unconventional optical devices, such as power splitters, light trapping structures, 

and dielectric nano antennas. To further develop the capabilities of machine-aided design approaches, and 

to avoid some problems of traditional optimization, such as the local minimum problem and expensive 
computations, the optical community started to look at data-driven and machine learning methods as 

alternative approaches to resolve the inverse design problem. Hence, machine learning became the central 

research theme in computer vision, natural language processing, speech recognition, and more. The optical 

community has been increasingly migrating the techniques of machine learning and data science into optical 
research, with various successful applications including ultrafast optics, optical communication, and optical 

microscopy [5] [6]. 

Artificial intelligence (AI) recently became a global concept in various physical sciences. Specifically, there 
are a diversity of challenging tasks in optics that can be effectively analyzed and solved without directly 

solving Maxwell’s equations but by utilizing these novel approaches. Meanwhile, the direct solution of 

Maxwell's equations can be utilized to generate enormous amounts of training data required for executing 
various AI algorithms. Thus, a remarkably powerful AI methodology which complements many typical 

analytical and numeric techniques finds many key applications in optics. Such approaches are used for 

inverse design, optimization, big-data processing, underpinning the fast development of optics. The concept 

of all-dielectric metasurface is motivated by the idea to utilize subwavelength dielectric Mie resonant 
nanoparticles as “meta-atoms” to build high efficient optical metasurfaces and meta devices [7]. Those can 

be defined as optical devices having exclusive functionalities because of a smart structuring the meta-atoms 

at the subwavelength scale merged with the use of functional and high-refractive-index materials. Differs 
from classical optics, where the electromagnetic response is totally defined by electric polarization, the 

metasurface is frequently termed “meta-optics” highlighting the importance of optically induced magnetic 

response of the artificial subwavelength-patterned structures. The high-refractive-index materials provide 

exceptional confinement of electromagnetic fields making even subwavelength particles resonant. The 
interference between these resonances results in a sort of scattering effects not existing in classical optics. 

Dielectric nanoscale structures are supposed to complement or even replace several plasmonic components 

in a range of potential applications. Furthermore, many concepts which had been developed for plasmonic 
structures, but fell short of their potential due to high losses of metals at optical frequencies, can now be 

used based on low-loss dielectric structures [8]. 

It's supposed that highly efficient all-dielectric metasurfaces with the extraordinary capability of 
polarization control can be commonly applied in areas of polarization detection and imaging, data 

encryption, display, optical communication and quantum optics for ultracompact and miniaturized optical 

systems realization [9] 

Deep learning (DL) is a subcategory of machine learning (ML) which is based on layered structures 
described as artificial neural networks (ANNs). ANNs derive their name from the neural structures found 

in biological beings. This structure can be mathematically emulated as a node, denoted as a neuron, which 

may contain many input and output connections with correlated weightings. These neurons have a non-
linear activation function that serves to map the inputs to an output and provides the switching behavior 

similar to that in biological neurons. These neurons are packed into layers which are connected to successive 

layers. The functionality of this is to construct a necessarily deep neural network such that any arbitrary 
function would be estimated. At the same time, the higher the ANN complexity the larger datasets is 

required for suitable prediction accuracy. ANNs can be considered as a mapping between input and output 

spaces which can be arbitrarily defined. For different tasks, ANNs can have complicated structures. The 
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dataset features are automatically learnt to set up the desired mapping from input to output. To perform a 
given task, the DL models should experience a process known as training [10]. 

Training a model requires the introduction of the so-called loss function, that provides feedback on the 

difference between the real output (or "ground truth") and the output predicted by the network for the same 

given input data. Training the ANN intends to minimize the loss function by adjusting the weight values at 
each layer. These tasks are commonly accomplished through some form of stochastic gradient descent 

which may be done effectively over the network with backward propagation [11]. The training is labeled 

complete when the model can predict the output with some required quality metric. After the training, the 
ANN can accurately map the input to the wanted output, implying that it has "learned" the necessary 

mapping from the given data. It should be known that this mapping is not essentially unique while 

differences in training procedure may lead to a failure to converge. Generally, a dataset is divided into 
training and validation sets. Due to high dimensional networks structure, over-fitting possibly occurs which 

should be mitigated. Over-fitting can be examined through the loss function applied to validation set. When 

the model is trained and over-fitting is overcome, the model considered to be capable of generating an 

output based on a sample input. This supposes that the training data provided is characteristic of the problem 
that one is trying to learn [12]. 

One of the major challenges of ML is the amount of data needed for the training procedure, which is 

typically determined by the complexity of the problem. 
DL is useful for tasks that require repeated resolution with different parameters or for creating complex 

feature extraction tasks. In photonics, ML is mainly used for forward and inverse design. Forward design 

predicts physical responses (e.g., scattering spectra, polarization) for a given structure using tools like T-
matrix calculations and full wave simulations to solve Maxwell’s equations. While ML can serve similar 

purposes, its greatest advantage lies in inverse design problems, where it determines structure parameters 

for a desired response. DL supports this through surrogate modeling, offering data-driven approximations 

instead of simulations [13]. 
Surrogate models (SMs) are used to replace expensive simulation models of engineering problems. 

Although computers are becoming faster and more powerful, the demand for computational complexity is 

still outpacing the improvements in computer power and speed. Additionally, using computer simulations 
can be challenging due to their high fidelity, regardless of how fast or powerful computers are. Even 

methods like parallel computing, where many calculations or processes are executed simultaneously, do 

not fully address these issues [14]. 

Surrogate models trained on limited data accurately predict unit cell properties and speed up microscopic 
optimization. These models replace full-wave simulations to quickly predict meta-atom properties [15]. 

In previous work, deep learning has been utilized in metasurface design and response verification. 

CHRISTIAN et al. have demonstrated modeling of complex all-dielectric metasurface systems with deep 
neural networks achieving an average mean square error of only 1.16×10-3 and is over five orders of 

magnitude faster than conventional electromagnetic simulation software [16]. A data preprocessing 

approach based on the governing laws of the physical problem to eliminate dimensional mismatch between 
a high dimensional optical response and a low dimensional feature space of metasurfaces was proposed by 

Ibrahim et al.  They trained forward and inverse models to predict optical responses of cylindrical meta-

atoms and to retrieve their geometric parameters for a desired optical response, respectively. Using their 

inverse model, they designed and demonstrated a focusing meta lens as a proof-of-concept application [17]. 
A deep learning-based metasurface/meta-atom modeling approach was introduced by SENSONG et al. to 

significantly reduce the characterization time while maintaining accuracy. Based on a convolutional neural 

network (CNN) structure, the proposed deep learning network was able to model meta-atoms with nearly 
freeform 2D patterns and different lattice sizes, material refractive indices and thicknesses [18]. To reach 

the highest working frequency for training the DNN, Fardin et al. have considered 8 ring shaped patterns 

to generate resonant notches at a wide range of working frequencies from 4 to 45 GHz. They proposed two 
network architectures. In one architecture, they restricted the output of the DNN, so the network can only 

generate the metasurface structure from the input of 8 ring shaped patterns. This approach drastically 

reduces the computational time, while keeping the network’s accuracy above 91%. They showed that the 
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model based on DNN can satisfactorily generate the output metasurface structure with an average accuracy 
of over 90% in both network architectures [19]. Xiaoshu et al. used deep learning methods to build a 

metamaterial database to achieve rapid design and analysis methods of metamaterials. They proposed a 

method to calculate the electromagnetic properties of metamaterials using DNNs. Effectively simulate the 

electromagnetic properties of periodic metamaterial structures [20]. VLAD et al. proposed an alternative 
data-free DL method using a physics-informed neural network (PINN) to enable more efficient computation 

of light diffraction from 3D optical metasurfaces, modeling of corresponding polarization effects, and 

wavefront manipulation. Once trained, the PINN-based electromagnetic field (EMF) solver simulates light 
scattering response for multiple inputs within a single inference pass of several milliseconds. This approach 

offers a significant speed-up compared to traditional numerical solvers, along with improved accuracy and 

data independence over data-driven networks [21]. 
In this paper, we have rebuilt the metasurface grating structure in [22] and used the surrogate model and 

DNN built-in COMSOL Multiphysics software, to optimize geometrical dimensions instead of the Monte 

Carlo optimization method used by Baki and Tawfeeq [22], to improve the performance by obtaining higher 

polarization extinction ratio (𝐸𝑅). Thus, improving its capability to function as a polarization modulator 
that is used in QKD systems. Simulation results of the obtained design show excellent extinction ratio of 

the polarizer. Thus, by utilizing COMSOL Multiphysics Surrogate model deep neural networks can help in 

optical component design improvement over conventional design methods. 
 

2. Theory 
 

DL ANN consists of an input layer, hidden layers and an output layer, as illustrated in Figure 1. Each layer 

is made of multiple nodes, those are fully or partially connected to the subsequent layer nodes. Each node 
has weight, that is tuned based on training. Biased parameter is added to the connection between two nodes 

too. The output 𝒚𝒊 is a function of node input 𝒙𝒊, weight 𝒘𝒊 and bias 𝒃𝒊, as in the following equation [23]: 

 

𝑦𝑖 = ∑(𝑥𝑖 − 𝑤𝑖 ) + 𝑏𝑖     …….      (1) 

 

In a supervised NN learning algorithm, input data comes with corresponding labels. The training process 
compares predicted results with these labels, continuously optimizing the network for better performance. 

It learns the relationships between metasurface structures and optical responses to perform specific optical 

functions. One of the main and fundamental supervised ANN algorithms is the multilayer perceptron (MLP) 
shown in Figure 1 [23]. 

 

 

      Fig. 1: Schematic illustration of typical deep learning model algorithm multiple perceptron [23] 

The MLP is a key model in deep learning, forming the basis of all other ANNs. It links inputs to outputs 

through hidden layers with nonlinear activation functions. This model optimizes many parameters, 

allowing it to learn complex, nonlinear relationships in optical data. In training, a cost function based 
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on variance or cross entropy is defined, and weights are adjusted using back propagation to minimize 
this cost. Then, target optical functions like scattering spectra are fed into the network to predict 

photonic structures. Adding more hidden layers increases feature learning and accuracy but can lead to 

over-fitting. The tandem network model solves non-uniqueness by combining inverse-design and 

forward-modeling networks, as shown in Figure 2 [24]. 
 

 

Fig. 2: Inverse and forward designs based on DL techniques [24] 

 

2.1 Metasurface Polarizers 

 

Metasurfaces generally consist of subwavelength structures (meta-atoms) arranged in a 2D plane. By 

adjusting the shapes, sizes, orientations, or positions of meta-atoms, a phase gradient can be introduced at 

the interface to mold the optical wavefront as needed. In addition to phase manipulation, metasurfaces 
leverage strong light–matter interactions at the subwavelength scale to regulate light across various degrees 

of freedom (DoFs) such as amplitude, frequency, chromatic dispersion, and polarization, using mechanisms 

like electric dipole resonance, magnetic dipole resonance, or guided mode resonance [9] [25] [26]. 

Polarization manipulation at the subwavelength scale is a unique capability of all-dielectric metasurfaces 
(ADMs), achieved by engineering the anisotropy of the media in contrast to traditional refractive and 

diffractive optical components. ADMs can be engineered to have much higher refractive index contrasts by 

introducing asymmetric meta-atoms compared to the principal refractive indices along two orthogonal axes 
(extraordinary and ordinary) difference in natural materials. Meta-atoms that are designed as birefringent 

elements can be used to achieve subwavelength polarization control for applications such as polarization 

conversion, polarization-dependent multiplexing, and complex vector beams. Combining these capabilities 
with phase and amplitude regulation allows for the realization of more complex functions [9] [25] [26]. 

In QKD systems, such as, the BB84 protocol two basis sequences are used, i.e. rectilinear and diagonal. 

The rectilinear basis includes horizontal 0° and vertical 90° polarization, while the diagonal basis has 45° 

and 135° polarization states. To generate these polarization states in the transmitter, optical polarizers are 
needed. With the high transmittance, high extinction ratio, compactness and integrability in optics, 

compared to bulk polarizers, metasurface polarizers are used in QKD transmitting systems [1] [2] [3] [27]. 

2.2 Deep Learning for Metasurface Structure Design 
 

Metasurface optics have rapidly advanced over the past decades, demonstrating strong capabilities in 
controlling light-matter interactions. Recently, deep learning has revolutionized this field [23]. Traditional 
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design methods, such as trial-and-error, parameter sweeps, and optimization algorithms, require extensive 
computational resources and time-consuming simulations. These simulations must be repeated if design 

requirements change, limiting user focus on actual needs. To address these issues, deep learning offers a 

faster, more efficient, and automated design approach [19]. 

 

3. Methodology 
 

Over the past two decades, the explorations of metasurfaces have led to the discovery of exotic light–matter 

interactions, such as anomalous deflection, asymmetric polarization conversion and wave-front shaping. 

An inverse metasurface design is taking place by providing the structure optical response vs. its geometric 

parameters as a dataset to NN, the network can be trained to learn the relationship between the input and 
output [23] [19]. 

Nanowire periodic structure lattice of the metasurface grating polarizer is designed in the visible region 

[22]. Based on the effect of guided-mode resonance. Guided-mode resonance involves structures composed of a 

substrate, a waveguide layer, and a grating layer. When illuminated by an incident light beam, a portion of the beam 
is directly transmitted through the structure while another portion is diffracted by the grating and trapped within the 

waveguide layer. Subsequently, some of the trapped light is rediffracted, causing destructive interference with the 

transmitted part of the light beam. At specific wavelengths and angular orientations of the incident beam, the structure 

resonates, resulting in complete interference and no transmission of light. The critical factor is the relative phase shift 

between the incident and diffracted waves, leading to destructive interference. Figure 3 illustrates this process. The 

grating layer (layer 2), assumed to be infinitely thin, is positioned at the interface between the high refractive index 

waveguide layer and the surrounding medium. Most of the incident plane-wave, denoted by t, is transmitted through 

the structure as b. The grating diffracts a small fraction of the incident plane-wave into the first-order wave [28]. 

 

Fig. 3: Basic geometry of grating waveguide structure and relevant interference waves. Transmitted wave t and 

diffracted wave S originating from the incident wave i destructively interfere at resonance [28]. 

 

 

Here in this work, the metasurface structure passes the 𝑇𝑀 polarized light and blocks the 𝑇𝐸 one. Grating 

structure dimensions must be designed to ensure having the best polarizer performance, i.e., high 𝐸𝑅 can 

be obtained [22]. Hereby, deep learning neural networks algorithms can be utilized to perform dimensions 

optimization. 
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Then by applying a condition to restrict the required response, i.e., max|𝑇𝑇𝑀 | and min|𝑇𝑇𝐸 | at a specific 

wavelength, a linearly polarized light with maximum extinction ratio 𝐸𝑅 can be obtained as in Eq. (2) [22]. 

Thus, the trained network can propose the optimal geometrical dimensions of the structure which meet the 

requirements. 
 

𝐸𝑅 =
𝑇𝑇𝑀

𝑇𝑇𝐸
     …….      (2) 

The structure in [22] consists of TiO2 grating on a SiO2 substrate of 1000 nm thickness. TiO2 is chosen as 

the base material because it exhibits no loss  ≈ 0 and high index of refraction for strong light-matter 

interactions at visible wavelength spectrum [29]. The grating is covered by SiO2 as in Figure 4, was built 

and simulated using COMSOL Multiphysics software as shown in Figure 5. The refractive indices of TiO2 

and SiO2 are 2.5824 and 1.4570 respectively at 𝜆 = 632 nm. 
 

 

 

 

 

 

 

 

Fig. 5: Grating structure unit mesh configuration 

Deep neural network, illustrated in Figure 6, was used to optimize the geometrical structure dimensions such as grating 

thickness 𝐷𝑔, grating period 𝑃 and fill factor 𝐹𝐹 which is the ratio of grating width 𝑊 to the grating period 𝑃. Thus, 

𝐹𝐹 = 𝑊 ⁄ 𝑃. 
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Fig. 4: Metasurface grating structure 
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Instead of Monte Carlo optimization method that was used in [22], where 𝐸𝑅 = 1800 was obtained in [22], 

the Surrogate model, a COMSOL Multiphysics software built-in tool, has been used to build and train an 

ANN with the dataset generated by specifying the input parameters limits and wavelength range, as listed 
in Table 1. The Surrogate model was trained on simulation data generated from a parametric sweep of 

structure geometry (𝑃, 𝐷𝑔and 𝐹𝐹, in addition to ) to simulate the response (𝑇𝑇𝐸  and 𝑇𝑇𝑀), and was fed 

directly to DNN. For validation, 20% random samples (not used for training) of generated dataset were 

used. 

 
Table 1. Surrogate Model Parameters Limits 

Parameter Lower limit Upper limit 

𝑫𝒈 100 nm 390 nm 

𝑷 200 nm 400 nm 

𝑭𝑭 0.1 0.9 

 400 nm 800 nm 

 

After execution of the model training, optimal structure dimensions were obtained that meet the output condition for 

higher 𝐸𝑅. The loss function used to evaluate the learning capability of the neural network is calculated using mean 

square error MSE as the loss function (𝐿), defined as in Eq. (3) [12]: 

 

𝐿(𝑤𝑖 , 𝑏𝑖) =
1

𝑛
∑ (𝑌𝑖 − Ŷ𝑖)

2𝑛
𝑖=1      …….      (3) 

Input Layer Hidden Layer Output Layer 

Max. |𝑇𝑇𝑀| 

Min. |𝑇𝑇𝐸| 

𝐷𝑔  

𝑃 

𝐹𝐹 

Fig. 6: ANN structure of the used model 
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Then the whole wavelength range, 400- 800 nm, 𝑻𝑻𝑴 and 𝑻𝑻𝑬 responses were simulated to calculated 𝑬𝑹 
using the obtained structure dimensions. The process was repeated, as illustrated in the block diagram 

shown in Figure 7. 
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Retune neural 

network 

parameters 
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Fig. 7: Process block diagram 

https://ijl.uobaghdad.edu.iq/index.php/IJL


 

              
University of Baghdad Publishing, Institute of Laser for Postgraduate Studies 
Journal homepage: https://ijl.uobaghdad.edu.iq/index.php/IJL 

 IJL, Issue 1, Vol. 24, 2025                                                                                                 122       

Table 2 Neural Network Parameter Setting 

Parameter Value Description 

Number of input nodes 3 
Number of nodes of Neural network input layer, i.e. input 

parameters 𝐷𝑔, 𝑃 and 𝐹𝐹 

Number of layers 10 Number of layers in Neural Network 

Number of nodes per layer 512 Number of nodes per each hidden layer in neural network 

Epoch size 1000 Determines how many times the model sees the entire dataset 

Batch size 128 
the size of the data subset passed through the network before the 

model's internal parameters are updated 

Number of input points 500 
Number to train the surrogate model to a sufficient degree of 

accuracy 

Activation function ReLU Rectified linear unit 

Output layer activation function Linear  

Optimizer Adam 
Optimizer is the element that fine-tunes a neural network's 

parameters during training 

Loss function 𝑀𝑆𝐸 
Measures how good a neural network model is performing a 

certain task 

Validation 20% random samples of dataset unused for training. 

Number of output nodes 2 Number of nodes of Neural network output layer, i.e. 𝑇𝑀 and 𝑇𝐸 

 

4. Result and discussion 
 

Based on block diagram illustrated in Figure 7, collected results were compared to tune the ANN 

parameters. Optimal obtained parameters were set for the final results, as illustrated in Table 2, based on 
the assessment of the training progress of the prediction, it can be noticed that validation loss did not drop 

similarly as much as the training loss curve did, as shown in Figure 8. This may indicate a kind of overfitting 

of ANN. Although, several tuning processes were made to NN parameters that improve the curve, yet 
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difference is distinguished. However, the resulting performance parameter (𝑬𝑹) showed excellent results. 

Sample results of tuning process are shown in Figure 9. The higher obtained 𝑬𝑹 was considered as the 

optimal design of the grating metasurface as shown in Figure 10, while EM field distribution for both 

𝑻𝑻𝑴 and 𝑻𝑻𝑬 are plotted as shown in Figure 11. 

 

 

Fig. 8: Training progress graph of ANN 

 

 

Fig. 9: Plot of  𝑇𝑇𝑀 , 𝑇𝑇𝐸  and 𝐸𝑅 vs. wavelength for different Surrogate Model parameter tuning samples. a and b, 

different inputs number. c and d, different hidden layers’ number of nodes. e and f, different number of hidden layers. 

 

 

Fig. 10: Metasurface grating structure response based on the optimal Surrogate model proposed dimensions 

a 

b 

c e 

d f 
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Fig. 11: The electric field distribution of the Surrogate metasurface grating structure. (a) 𝑇𝑇𝑀  (b) 𝑇𝑇𝐸 . 

 

The result from COMSOL Multiphysics simulation is consistent with the predictions of the DL Surrogate 

model which validates the accuracy of the approach used. 

Surrogate model and ANN proposed the dimensions, 𝑫𝒈 =  𝟏𝟐𝟏. 𝟕𝟏  nm, 𝑭𝑭 =  𝟎. 𝟏𝟖𝟑𝟎𝟐  and 𝑷 =

 𝟑𝟗𝟎. 𝟖𝟑 nm, as the optimal grating structure at  =  𝟔𝟑𝟐 nm, to achieve high 𝑬𝑹. 
Optical response of the metasurfaces grating was simulated using the COMSOL Multiphysics over the 

wavelength 400-800 nm, resulting into an 𝑬𝑹 𝟔𝟎𝟎𝟎𝟎  , at the wavelength of interest, as illustrated in 

Figure 10, compared to 1800 using Monte Carlo optimizer in [22]. The response 𝑻𝑻𝑴  and 𝑻𝑻𝑬  of the 

polarizer grating structure are simulated with dimensions change tolerance of 10% to demonstrate the 

fabrication error. Results show good tolerance for 𝑫𝒈, good tolerance for 𝑷 and very good tolerance for 𝑭𝑭 

as illustrated in Figure 12, a, b and c respectively. 

 

   

Fig.12: Structure dimensions response with 10% tolerance. (a) grating thickness 𝐷𝑔 (b) grating period 𝑃 

(c) fill factor 𝐹𝐹. 

 

5. Conclusions 

Utilizing the DL technique, Surrogate model, and DNN built-in COMSOL Multiphysics software, have 
been used to optimize dimensions of TiO2 metasurface grating structure, to obtain high quality polarizer 

with high 𝑬𝑹 of  60000 at  =  𝟔𝟑𝟐 nm, in visible spectral region. Thus, by using the Surrogate model 

and DL, the design process results were highly improved compared to conventional iterative optimization 

techniques such as Monte Carlo used in [22]. Hence, this polarizer can be used for photon polarization state 

encoding in QKD systems.  
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  توزيع العميق لمنظومات التعلم  باستخدام الأسطح الفعالة من  محزز  لمستقطب الأداء  تحسين

 الكمومي  المفتاح 

  
 توفيق   خسرو شيلان ،*الدهوي سامي  حيدر

 العراق. ، بغداد، بغداد ، جامعة معهد الليزر للدراسات العليا 

 
  haidar.sami1101a@ilps.uobaghdad.edu.iq:*للباحث البريد الالكتروني

 
  وتلعب  الحديثة المتكاملة دوائر البصريات في أساسية بصرية  مكونات هي  الأسطح الفعالة من المصنوعة  المستقطبات الخلاصة: 

  ذلك،  ومع.  الكمومي  التشفير  في  الكمومي  المفتاح  توزيع  منظومات  ذلك  في  بما   البصرية  التطبيقات  من  العديد  في  حيويًا   دورًا

  بناءً   الهيكلية  للأبعاد  الجيد  التخمين  على  العالية  الكفاءة   ذات   الأسطح الفعالة  من   المصنوعة   للمستقطبات  العكسي  التصميم  يعتمد

  من  يقلل  مما   العكسي،  التصميم  عملية  في  فعال  بشكل   تساعد  أن  العميق  التعلم  لشبكات   يمكن.  المطلوبة  البصرية  الاستجابة  على

 استخدام   يمكن  وبالتالي،.  التقليدية  التحسين  بطرق  مقارنة  أفضل  نتائج  تحقيق  يمكن  بينما   بالمحاكاة،  المتعلقة  والمتطلبات  الوقت

 مستقطب محزز من   هيكل  لتصميم  COMSOL Multiphysicsفي برنامج    العميقة  العصبية  والشبكات   Surrogateنموذج  

 .المرئي نانومتر ضمن الطيف 632 مقدا ره موجي طول عند 60000 تبلغ حوالي عالية فصل نسبة  مع الأسطح الفعالة
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